Developing Highly Differentiated Antibody Therapeutics

argenx

November, 2018
Forward-Looking Statements

THIS PRESENTATION HAS BEEN PREPARED BY ARGENX SE ("ARGENX" OR THE "COMPANY") FOR INFORMATIONAL PURPOSES ONLY AND NOT FOR ANY OTHER PURPOSE. NOTHING CONTAINED IN THIS PRESENTATION IS, OR SHOULD BE CONSTRUED AS, A RECOMMENDATION, PROMISE OR REPRESENTATION BY THE PRESENTER OR THE COMPANY OR ANY DIRECTOR, EMPLOYEE, AGENT, OR ADVISER OF THE COMPANY. THIS PRESENTATION DOES NOT PURPORT TO BE ALL-INCLUSIVE OR TO CONTAIN ALL OF THE INFORMATION YOU MAY DESIRE. THIS PRESENTATION ALSO CONTAINS ESTIMATES AND OTHER STATISTICAL DATA MADE BY INDEPENDENT PARTIES AND BY US RELATING TO MARKET SIZE AND GROWTH AND OTHER DATA ABOUT OUR INDUSTRY. THIS DATA INVOLVES A NUMBER OF ASSUMPTIONS AND LIMITATIONS, AND YOU ARE CAUTIONED NOT TO GIVE UNDUE WEIGHT TO SUCH ESTIMATES.

Safe Harbor: Certain statements contained in this presentation, other than present and historical facts and conditions independently verifiable at the date hereof, may constitute forward-looking statements. Examples of such forward-looking statements include those regarding our investigational product candidates and preclinical studies and clinical trials, and the status, plans, timing of expected data readouts and related presentations and related results thereof, including the design of our trials and the availability of data from them, the timing and achievement of our product candidate development activities, future results of operations and financial positions, including potential milestones, business strategy, plans and our objectives for future operations. When used in this presentation, the words “anticipate,” “believe,” “can,” “could,” “estimate,” “expect,” “intend,” “is designed to,” “may,” “might,” “will,” “plan,” “potential,” “predict,” “objective,” “should,” or the negative of these and similar expressions identify forward-looking statements. Such statements, based as they are on the current analysis and expectations of management, inherently involve numerous risks and uncertainties, known and unknown, many of which are beyond the Company’s control. Such risks include, but are not limited to: the impact of general economic conditions, general conditions in the biopharmaceutical industries, changes in the global and regional regulatory environments in the jurisdictions in which the Company does or plans to do business, market volatility, fluctuations in costs and changes to the competitive environment. Consequently, actual future results may differ materially from the anticipated results expressed in the forward-looking statements. In the case of forward-looking statements regarding investigational product candidates and continuing further development efforts, specific risks which could cause actual results to differ materially from the Company’s current analysis and expectations include: failure to demonstrate the safety, tolerability and efficacy of our product candidates; final and quality controlled verification of data and the related analyses; the expense and uncertainty of obtaining regulatory approval, including from the U.S. Food and Drug Administration and European Medicines Agency; the possibility of having to conduct additional clinical trials; our ability to obtain and maintain intellectual property protection for our product candidates; and our reliance on third parties such as our licensors and collaboration partners regarding our suite of technologies and product candidates. Further, even if regulatory approval is obtained, biopharmaceutical products are generally subject to stringent on-going governmental regulation, challenges in gaining market acceptance and competition. These statements are also subject to a number of material risks and uncertainties that are described in the Company’s filings with the U.S. Securities and Exchange Commission ("SEC"), including in argenx’s most recent annual report on Form 20-F filed with the SEC as well as subsequent filings and reports filed by argenx with the SEC. The reader should not place undue reliance on any forward-looking statements included in this presentation. These statements speak only as of the date made and the Company is under no obligation and disavows any obligation to update or revise such statements as a result of any event, circumstances or otherwise, unless required by applicable legislation.
Rapidly Emerging Leadership in Immunology
Pioneering differentiated therapeutic antibodies in severe autoimmune diseases and cancer

1. Novel Target Biology
 - Integrated via advanced technology suite
 - First- and best-in-class potential

2. Innovative Access Program
 - Robust science
 - Collaborative
 - Efficient pipeline expansion

3. Highly Productive Development Engine
 - Rapid development timeline
 - ~New candidate each year since 2009

4. Maximum Value per Asset
 - Pipeline-in-a-product strategy
 - Strong biological rationale

Translate immunology breakthroughs into novel medicines which truly impact patients’ lives, in a sustainable value creating approach
Strong Momentum with Important Near-Term Catalysts

2018 a monumental year with **three** additional data milestones before YE

2018 Accomplishments To-Date

ARGX-113 efgartigimod
- MG: Phase 2 data - AAN
- MG: End-of-Phase 2 meeting – FDA/PMDA
- MG: Phase 3 study
- ITP: Phase 2 topline data
- PV: Interim Phase 2 data
- SC formulation: Phase 1 data
- CIDP: 4th indication

ARGX-110 cusatuzumab
- AML: Ongoing enrollment in Phase 2 trial
- AML: Phase 1 dose-escalation data (ASH abstract)

ARGX-117
- Exercised license option

Upcoming Milestones

ARGX-113 efgartigimod
- ITP: Phase 2 full data at ASH18
- ITP: End-of-Phase 2 meeting - FDA
- ITP: Phase 2 subcutaneous study initiation (1H19)
- ITP: Phase 3 initiation (2H19)
- PV: Phase 2 full data (1H19)
- CIDP: Phase 2 initiation (1H19)

ARGX-110 cusatuzumab
- AML: Phase 1 dose-escalation full data at ASH18
- AML: Phase 2 full data in 2H19
- CTCL: Phase 2 full data at ASH18

ARGX-117
- R&D-day: full preclinical update and first indication

Continued Progress Across Partnered Programs including Option Exercise by AbbVie for ARGX-115
Deep Pipeline of Wholly-Owned Candidates for Orphan Indication

Significant partner activity across other therapeutic areas

<table>
<thead>
<tr>
<th>Product Candidate</th>
<th>Target</th>
<th>Indication</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>BLA</th>
<th>Next Milestone / Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wholly-Owned Product Candidates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARGX-113 (efgartimod)</td>
<td>FcRn</td>
<td>Myasthenia Gravis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3Q18: Phase 3 initiated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immune Thrombocytopenia (“ITP”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASH18: Detailed Phase 2 data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITP Subcutaneous Formulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1H19: Phase 2 initiation in subcutaneous formulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pemphigus Vulgaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1H19: Phase 2 topline data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chronic Inflammatory Demyelinating Polyneuropathy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1H19: Phase 2 initiation</td>
</tr>
<tr>
<td>ARGX-110 (cusatuzumab)</td>
<td>CD70</td>
<td>T-Cell Lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASH18: Phase 2 topline results CTCL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acute Myeloid Leukemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASH18: Phase 1 full data in AML/MDS</td>
</tr>
<tr>
<td>ARGX-117</td>
<td>Novel complement target</td>
<td>Severe Autoimmune Diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antibody-mediated autoimmune diseases Complementary to ARGX-113</td>
</tr>
<tr>
<td>Partnered Product Candidates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARGX-112</td>
<td>IL-22R</td>
<td>Skin Inflammation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eligible for up to ~€100mm in milestones and tiered royalties</td>
</tr>
<tr>
<td>ARGX-115</td>
<td>Cancer Immunotherapy</td>
<td>AbbVie exercised option to develop and commercialize in August 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARGX-116</td>
<td>ApoC3</td>
<td>Dyslipidemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Received $60mm so far; eligible for up to $625mm milestones & tiered royalties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eligible for double-digit royalties and exclusive option to license the program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Innovative Access Program**: 7 live programs
- Antibody discovery alliance with Shire focused on multiple rare disease targets – 2 options exercised
- Additional programs include ARGX-111, targeting c-MET in solid tumors and blood cancers (P1 concluded, wholly-owned, available for partnering), and ARGX-109 (gerilimzumab), targeting IL-6 for rheumatoid arthritis (P1 concluded, partnered with Genor Biopharma)
Efgartigimod: A Pipeline-in-a-Product Opportunity
• Human IgG1 Fc-fragment that utilizes ABDEG™ Fc engineering technology\(^{(2)(3)(4)}\)
• Targets and binds to FcRn blocking recycling of IgG leading to elimination of IgG antibodies\(^{(3)(4)}\)
• Cannot engage Fc\(\gamma\) receptors when bound to its target FcRn\(^{(3)(4)}\)
• Pathogenic IgG antibodies mediate multiple autoimmune diseases

\(^{(1)}\) Roopenian et al. 2007, Nat Rev Immunol.
\(^{(3)}\) Ulrichts et al. 2018, JCI
\(^{(4)}\) argenx data
Novel Modality in Severe Autoimmune Diseases

Common Characteristics of Beachhead Indications for efgartigimod

- Pathogenic auto-antibodies causal to disease biology
- Common treatments include corticosteroids, broad immunosuppressants, IVIG, plasmapheresis, Rituxan – with mixed response rates and serious side effects
- Orphan potential in United States (MG: 50-60K\(^{(1)}\); ITP: 50K\(^{(2)}\); PV: 30-40K\(^{(3)}\))
- Potential pharmacoeconomic benefit to healthcare system given price of targeted therapies (e.g., Soliris for refractory MG ~$700K / year\(^{(4)}\))

Myasthenia Gravis
- Block Acetylcholine Receptors
- Cross-link + internalize AChRs
- Complement recruitment

Immune Thrombocytopenia
- Enhance platelet clearance
- Platelet killing
- Inhibit platelet production
- Reduced platelet function

Pemphigus Vulgaris
- Sterically hinder epithelial adhesion affecting skin and mucosal integrity

(2) Wall street research; Estimated 65K ITP patients in US with ~80% diagnosed with primary ITP
(3) IPPF (www.pemphigus.org)
(4) Source: Reprinted with permission by First Databank Inc.; WAC = Wholesale Acquisition Cost 8/21/17
MG Phase 2 Trial: Completed, Proof of Concept Established

Key inclusion criteria
- Generalized MG patients
- MGFA Class II, III, or IVa
- Positive for anti-AChR auto-antibodies
- MG ADL score of ≥ 5 at screening(*)
- On a stable dose of their SoC

Treatment Phase
- **SoC + ARGX-113 (10mg/kg)**
 - N=12
 - 4 doses; N= 24

Follow-up Phase
- Study start-to-finish in 11 months

Primary endpoint
- Safety & Tolerability

Secondary endpoints
- **Efficacy**
 - (MG-ADL; QMG; MGC; MG-QoL)
- **PK**
- **PD**
 - total IgG; pathogenic IgG
- **Immunogenicity**

(*) >50% of the score attributed to non-ocular items

Clinicaltrials.gov: NCT029655573, argenx data
Efgartigimod Safety and Tolerability Data from Phase 2

2 hour infusion enabling out-patient administration

- Efgartigimod was well-tolerated in patients; confirmed findings from Phase 1 healthy volunteer trial
- The TEAEs profile was balanced between efgartigimod and placebo
- TEAEs were mostly mild (grade 1) in severity; no severe AEs were reported
- No deaths, serious AEs or TEAEs leading to discontinuation of treatment were reported during the trial

<table>
<thead>
<tr>
<th>Treatment Emergent Adverse Events (TEAEs) Reported in ≥ 2 patients</th>
<th>Placebo (N = 12)</th>
<th>Efgartigimod (N = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEAEs (Total)</td>
<td>10 (83.3%)</td>
<td>10 (83.3%)</td>
</tr>
<tr>
<td>• Headache</td>
<td>3 (25.0%)</td>
<td>4 (33.3%)</td>
</tr>
<tr>
<td>• Nausea</td>
<td>1 (8.3%)</td>
<td>1 (8.3%)</td>
</tr>
<tr>
<td>• Diarrhea</td>
<td>1 (8.3%)</td>
<td>1 (8.3%)</td>
</tr>
<tr>
<td>• Abdominal pain upper</td>
<td>1 (8.3%)</td>
<td>1 (8.3%)</td>
</tr>
<tr>
<td>• Arthralgia</td>
<td>2 (16.7%)</td>
<td>-</td>
</tr>
<tr>
<td>• B-lymphocyte decrease</td>
<td>-</td>
<td>2 (16.7%)</td>
</tr>
<tr>
<td>• Lymphocyte count decrease</td>
<td>-</td>
<td>2 (16.7%)</td>
</tr>
<tr>
<td>• Monocyte count decrease</td>
<td>-</td>
<td>2 (16.7%)</td>
</tr>
<tr>
<td>• Neutrophil count increase</td>
<td>-</td>
<td>2 (16.7%)</td>
</tr>
<tr>
<td>• Myalgia</td>
<td>-</td>
<td>2 (16.7%)</td>
</tr>
<tr>
<td>• Pruritus</td>
<td>2 (16.7%)</td>
<td>1 (8.3%)</td>
</tr>
<tr>
<td>• Rhinorrhea</td>
<td>1 (8.3%)</td>
<td>1 (8.3%)</td>
</tr>
<tr>
<td>• Tooth abscess</td>
<td>2 (16.7%)</td>
<td>-</td>
</tr>
<tr>
<td>• Toothache</td>
<td>2 (16.7%)</td>
<td>-</td>
</tr>
<tr>
<td>Efgartigimod deemed related TEAEs</td>
<td>3 (25.0%)</td>
<td>8 (66.7%)</td>
</tr>
<tr>
<td>• Headache</td>
<td>1 (8.3%)</td>
<td>3 (25.0%)</td>
</tr>
<tr>
<td>• Monocyte count decrease</td>
<td>0 (0.0%)</td>
<td>2 (16.7%)</td>
</tr>
<tr>
<td>• Rhinorrhea</td>
<td>1 (8.3%)</td>
<td>1 (8.3%)</td>
</tr>
</tbody>
</table>
MG Phase 2 Baseline Population and Disease Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Placebo (N = 12)</th>
<th>Efgartigimod (N = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean ± SD)</td>
<td>43.5 ± 19.3</td>
<td>55.3 ± 13.6</td>
</tr>
<tr>
<td>Gender (N (%))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>4 (33.3%)</td>
<td>5 (41.7%)</td>
</tr>
<tr>
<td>Female</td>
<td>8 (66.7%)</td>
<td>7 (58.3%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>-</td>
<td>1 (8.3%)</td>
</tr>
<tr>
<td>Black / African American</td>
<td>1 (8.3%)</td>
<td>-</td>
</tr>
<tr>
<td>White</td>
<td>11 (91.7%)</td>
<td>11 (91.7%)</td>
</tr>
<tr>
<td>MGFA Disease Class at Screening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class II</td>
<td>7 (58.4%)</td>
<td>6 (50.0%)</td>
</tr>
<tr>
<td>Class III</td>
<td>4 (33.3%)</td>
<td>6 (50.0%)</td>
</tr>
<tr>
<td>Class IV</td>
<td>1 (8.3%)</td>
<td>-</td>
</tr>
<tr>
<td>Baseline QMG score (mean ± SD) (min, median, max score)</td>
<td>11.8 ± 5.4 (3, 12.5, 24)</td>
<td>14.5 ± 6.3 (6, 14, 30)</td>
</tr>
<tr>
<td>Baseline MG-ADL score (mean ± SD) (min, median, max score)</td>
<td>8.0 ± 2.2 (5, 8, 13)</td>
<td>8.0 ± 3.0 (5, 7.5, 15)</td>
</tr>
<tr>
<td>Baseline MGC score (mean ± SD)</td>
<td>14.5 ± 4.5</td>
<td>16.7 ± 8.7</td>
</tr>
<tr>
<td>Baseline MGQoL score (mean ± SD)</td>
<td>14.5 ± 6.1</td>
<td>19.7 ± 5.7</td>
</tr>
<tr>
<td>SoC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylcholinesterase inhibitors N (%)</td>
<td>11 (91.7%)</td>
<td>12 (100.0%)</td>
</tr>
<tr>
<td>Corticosteroids N (%)</td>
<td>5 (41.7%)</td>
<td>8 (66.7%)</td>
</tr>
<tr>
<td>Immunosuppressants N (%)</td>
<td>2 (16.7%)</td>
<td>9 (75.0%)</td>
</tr>
</tbody>
</table>
• PD effect of efgartigimod in the Phase 2 clinical trial very similar to the Phase 1 trial in healthy volunteers
• IgG reduction across IgG subtypes (AChR autoantibodies are IgG1/3; MuSK autoantibodies are IgG4)
• IgM, IgA and albumin levels not affected (data not shown)
Clinically Meaningful and Long-lasting Reduction of Efficacy Scores

- Clinically meaningful and statistically significant improvement reached in small patient population (N=24)
- Consistency between QMG and MG-ADL scores

QMG

MG-ADL

Weekly dosing, 4x total

(1) Quantitative Myasthenia Gravis
(2) Myasthenia Gravis Activity-of-Daily-Living
Robust Clinical Improvement over Placebo Group

- **Efgartigimod vs. placebo**: increasing differentiation observed with increasing MG-ADL/QMG thresholds

* Missing data point of 1 patient
Total & Pathogenic IgG Reduction Correlates with Clinical Improvements

Assessment for all efficacy scales

- Clinical improvement persists despite return of IgG levels
- Potential differentiation from PLEX, where clinical benefit was reported to be lost 2-4 weeks after end of treatment

(1) Kuks and Skallebaek, 1998, Transfus Sci
83% of patients treated with efgartigimod achieved a clinically meaningful response (MG-ADL ≥2)
75% of patients treated with efgartigimod had a clinically meaningful and statistically significant improvement in MG-ADL score for a period of at least 6 consecutive weeks versus 25% of patients on placebo
gMG: Conclusions of Phase 2 Study of Efgartigimod

- Consistent and favorable tolerability profile
- Fast, long-lasting and sustained benefit; clinically meaningful and statistically significant
- Strong correlation between IgG level reduction and disease improvement; supporting focus on IgG-mediated diseases
- Significant reduction of AChR autoantibodies
- Phase 2 execution advances efgartigimod into Phase 3 (initiated)
Myasthenia Gravis Phase 3 ADAPT Trial Design

Same Primary Endpoint as Successful Phase 2 Trial

- Randomized, double-blind, placebo-controlled, multicenter trial enrolling 150 patients in North America, Europe and Japan
- 10 mg/kg intravenous (IV) dose of efgartigimod over 26-week period
- Enrolling AChR positive and AChR negative patients with disease driven primarily by MuSK and LRP4 autoantibodies
- Patients in the ADAPT trial will be able to roll over into an open-label extension trial for a period of one year
- First patient dosed in September 2018
- Based on PMDA feedback, this Phase 3 trial, if data is positive, to also serve as a basis for Japan registrational submission

Primary endpoint
Myasthenia Gravis Activities of Daily Living (MG-ADL) Score

Secondary endpoints
Efficacy, Safety, Tolerability, Quality of Life and Impact on Normal Daily Activities Measures
ITP Amended Phase 2 Trial Design

Key inclusion criteria:
- ITP patients with platelet levels < 30 X 10^9/L
- On a stable dose of their SoC treatment prior to randomization

Screening/Randomization

Main Study

<table>
<thead>
<tr>
<th>Treatment Phase</th>
<th>Follow-up Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoC + efgartigimod (10mg/kg) N=13</td>
<td></td>
</tr>
<tr>
<td>SoC + efgartigimod (5mg/kg) N=13</td>
<td></td>
</tr>
<tr>
<td>SoC + Placebo N=12</td>
<td></td>
</tr>
</tbody>
</table>

4 doses; N=38

Open Label Extension (OLE)

SoC + efgartigimod (10mg/kg) N = 12

33% of OLE patients come from placebo arm

Primary endpoint

- **Safety & Tolerability**

Secondary endpoints

- **Efficacy** (platelet counts, rescue therapy and bleeding)
- **PK**
- **PD** total IgG; pathogenic IgG
- **Immunogenicity**

Timeline

- **≤2 weeks**
- **3 weeks**
- **21 weeks**
- **1 year**

19 study centers from 8 countries
ITP Amended Phase 2 Trial Design

Key inclusions criteria:
- ITP patients with platelet levels < 30 X 10^9/L
- On a stable dose of their SoC treatment prior to randomization

Main Study

Screening/Randomization	Treatment Phase	Follow-up Phase

Key endpoints: Efficacy (platelet counts, rescue therapy and bleeding)

Safety & Tolerability

Open Label Extension (OLE)

- SoC + efgartigimod (10mg/kg) N = 12
- 33% of OLE patients come from placebo arm

Key Considerations
- Initiated appr. halfway through the study
- Only eligible for patients with platelet counts < 30x10^9/L (excl long responders still in response at end of study)
- 33% (N = 4) of OLE patients come from placebo arm
Efgartigimod Targets All Pathogenic AutoAb Actions Simultaneously
Potential to eliminate therapeutic cycling based on trial-and-error

1. Accelerate platelet clearance
 - Autoantibodies
 - Platelets
 - Macrophage
 - TPO-RA

2. Inhibit platelet production
 - Autoantibodies
 - Megakaryocyte

3. Induce platelet killing
 - Autoantibodies
 - Platelets

4. Interfere with platelet function
 - Autoantibodies
 - Platelets
 - Fibrinogen receptor
 - vWF receptor
 - Collagen receptor
Baseline Population and Disease Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Placebo (N = 12)*</th>
<th>Efgartigimod: 5mg/kg (N = 13)</th>
<th>Efgartigimod: 10 mg/kg (N = 13)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median, (range)</td>
<td>38.5 (19 - 69)</td>
<td>41.0 (22 - 77)</td>
<td>46.0 (29 - 62)</td>
</tr>
<tr>
<td>Gender, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Male</td>
<td>5 (41.7)</td>
<td>4 (30.8)</td>
<td>9 (69.2)</td>
</tr>
<tr>
<td>• Female</td>
<td>7 (58.3)</td>
<td>9 (69.2)</td>
<td>4 (30.8)</td>
</tr>
<tr>
<td>Race, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• White</td>
<td>11 (91.7)</td>
<td>12 (92.3)</td>
<td>13 (100)</td>
</tr>
<tr>
<td>• Not reported</td>
<td>1 (8.3)</td>
<td>1 (7.7)</td>
<td>-</td>
</tr>
<tr>
<td>ITP Classification, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Newly diagnosed (≤3 months)</td>
<td>-</td>
<td>2 (15.4)</td>
<td>-</td>
</tr>
<tr>
<td>• Persistent (>3 and <12 months)</td>
<td>3 (25.0)</td>
<td>1 (7.7)</td>
<td>4 (30.8)</td>
</tr>
<tr>
<td>• Chronic (≥12 months)</td>
<td>9 (75.0)</td>
<td>10 (76.9)</td>
<td>9 (69.2)</td>
</tr>
<tr>
<td>Duration of ITP, median (range), years</td>
<td>3.5 (0.3 - 47.8)</td>
<td>4.5 (0.1 - 34.2)</td>
<td>5.4 (0.7 - 28.7)</td>
</tr>
<tr>
<td>Baseline platelet count, mean, /µL (range)</td>
<td>18 (4 - 40)</td>
<td>18 (6 – 49)</td>
<td>15 (5 - 35)</td>
</tr>
<tr>
<td>Baseline platelet count of <15k/µL, N (%)</td>
<td>6 (50.0)</td>
<td>7 (53.8%)</td>
<td>7 (53.8)</td>
</tr>
<tr>
<td>SoC at baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Corticosteroids N (%)</td>
<td>3 (25.0)</td>
<td>10 (76.9)</td>
<td>6 (46.2)</td>
</tr>
<tr>
<td>• TPOs N (%)</td>
<td>3 (25.0)</td>
<td>4 (30.8)</td>
<td>3 (23.1)</td>
</tr>
<tr>
<td>• Immunosuppressants N (%)</td>
<td>1 (8.3)</td>
<td>-</td>
<td>1 (7.7)</td>
</tr>
<tr>
<td>• Watch & Wait N (%)</td>
<td>4 (33.3)</td>
<td>2 (15.4)</td>
<td>5 (38.5)</td>
</tr>
<tr>
<td>• Other N (%)</td>
<td>1 (8.3)</td>
<td>1 (7.7)</td>
<td>-</td>
</tr>
</tbody>
</table>

* Four placebo patients were discontinued before the end of the main study ** Two 10mg/kg patients were discontinued before receiving all 4 infusions argenx data
Favorable Tolerability Profile

Consistent with efgartigimod clinical studies to date

- Well-tolerated profile: consistent with Phase 2 MG and Phase 1 healthy volunteer trials
- TEAEs profile balanced between efgartigimod and placebo arms
- TEAEs mostly mild (grade 1) in severity; one non-study drug related SAE (acute bronchitis)
- No deaths or TEAEs leading to discontinuation of treatment reported

<table>
<thead>
<tr>
<th>Treatment Emergent Adverse Events (TEAEs) Reported in ≥ 2 subjects (non-bleeding)</th>
<th>Placebo (N = 12)</th>
<th>Efgartigimod 5 mg/kg (N = 13)</th>
<th>Efgartigimod 10 mg/kg (N = 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most common TEAEs N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>2 (16.7)</td>
<td>1 (7.7)</td>
<td>-</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1 (8.3)</td>
<td>-</td>
<td>2 (15.4)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>-</td>
<td>-</td>
<td>2 (15.4)</td>
</tr>
<tr>
<td>Cystitis</td>
<td>-</td>
<td>1 (7.7)</td>
<td>1 (7.7)</td>
</tr>
<tr>
<td>Rash</td>
<td>1 (8.3)</td>
<td>1 (7.7)</td>
<td>-</td>
</tr>
<tr>
<td>Productive cough</td>
<td>1 (8.3)</td>
<td>1 (7.7)</td>
<td>-</td>
</tr>
<tr>
<td>TEAEs deemed related to study intervention N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>1 (8.3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vomiting</td>
<td>-</td>
<td>-</td>
<td>1 (7.7)</td>
</tr>
<tr>
<td>Pubic pain</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vaginal discharge</td>
<td>1 (8.3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amenorrhoea</td>
<td>1 (8.3)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

argenx data; data shown from the main study
Strong Improvement of Platelet Counts Across Doses

- 46% of patients for both doses of efgartigimod and 58% of OLE patients realized platelet response $\geq 50 \times 10^9/L$ during at least two visits
- Novel mode of action beyond boosting platelet production or broad immune-suppression
Robust Improvement of Platelet Count

Post-hoc analysis of increasing thresholds of efficacy

<table>
<thead>
<tr>
<th>Response Rate (%)</th>
<th>placebo + SOC (N=12)</th>
<th>efgartigimod + SOC (pooled N=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 50×10⁹/L (>10 cumulative days)</td>
<td>0% (N=0)</td>
<td>(N=10) 38%</td>
</tr>
<tr>
<td>≥ 100×10⁹/L</td>
<td>8% (N=1)</td>
<td>(N=11) 42%</td>
</tr>
<tr>
<td>≥ 50×10⁹/L (at least two visits)</td>
<td>25% (N=3)</td>
<td>(N=12) 46%</td>
</tr>
<tr>
<td>≥ 30×10⁹/L</td>
<td>58% (N=7)</td>
<td>(N=19) 73%</td>
</tr>
</tbody>
</table>

- Efgartigimod generated therapeutic effect at multiple relevant thresholds of efficacy
- Duration of platelets remaining ≥50×10⁹/L ranged from 1 - 20 weeks, with five patients above that platelet threshold for more than a month

Note: Increasing threshold analysis based exact logistic regression model with the baseline result as a factor
Effect Observed Across ITP Classifications and SOC

- **Case 1:** Chronic ITP (diagnosed in 1984); Low platelets at base (<10x10^9/L); eltrombopag (75 mg); 5 mg/kg efgartigimod
- **Case 2:** Persistent ITP; Low platelets at base (<10x10^9/L); watch & wait; 10 mg/kg efgartigimod
- **Case 3:** Newly diagnosed ITP, ~25x10^9/L platelets at base; Corticosteroids (12 mg) tapering to 4 mg qd in follow up; 5 mg/kg efgartigimod

Note: central lab values for the main study (until day 78). All local lab values for the extended follow-up > 78d. Include extended follow-up for case 2 and 3

Extended follow-up period shown by dotted lines, note frequency of visits dependent on medical need in this period
ITP Phase 2: Hematological Beachhead Established

- Favorable and consistent safety & tolerability profile
- Clinically meaningful & statistically significant increase of platelet count – across doses and ITP patient types
- Strong and consistent IgG reduction – validating focus on IgG mediated diseases
- Enabling Phase 3 in ITP (IV) and launch of Phase 2 in ITP for SubQ formulation
Pemphigus Vulgaris Phase 2 Adaptive Design

IDMC Recommendations in Red

Treatment Phase

Induction

3 weeks

COHORT 1: N= 4

efgartigimod (10 mg/kg)

4 infusions (weekly)

COHORT 2 & 3: N= 4 + 4

efgartigimod (10 mg/kg)

4 infusions (weekly)

Maintenance

6 weeks → 8 weeks

efgartigimod (10 mg/kg)

2 infusions (w2, w6)

4 infusions (w2, w4, w6, w8)

Follow-up Phase

8 weeks

- Cohort 1: 10 mg/kg, induction = 4 infusions (3 weeks), maintenance = 2 infusions (6 weeks)
- Additional cohorts:
 - Same dose (10 mg/kg)
 - 2 additional administrations during maintenance phase
 - Extend maintenance duration to 8 weeks
Pemphigus Vulgaris Phase 2 Interim Data

Rapid disease control in 4 out of 6 PV patients:
- 3 within 1 week
- 1 within 4 weeks

Patients with disease control:
- Mean max reduction in Pemphigus Disease Area Index (PDAI) score: 55%
- Mean max decrease in pathogenic IgGs: 57%

Favorable tolerability profile

No meaningful anti-drug antibody signals (ADA) reported
Phase 1 Healthy Volunteer Subcutaneous Formulation

Open Label Trial Design

Inclusion criteria
- Healthy male subjects
- 18-55 years old
- Body weight: 50 – 100 kg

Screening/Randomization

- Single IV dose (10 mg/kg)
 N= 8

- Single SC dose (10 mg/kg)
 N= 8

- 2X IV dose (20 mg/kg) + 8X SC dose (300 mg)
 N= 8 (50-70 kg) + 8 (80-100 kg)

Treatment Phase & Follow-up Phase

- 3 weeks

Read out

- Safety & Tolerability
- PK
- PD Total IgG; IgG subtypes; IgA & IgM
- Immunogenicity

Clinicaltrials.gov: NCT03334084, argenx data
Efgartigimod: Viability of Subcutaneous Dosing

SC formulations potentially important for larger patient populations (chronic, ex-hospital)

Phase 1 Healthy Volunteer Subcutaneous Formulation

Comparable IgG reduction

<table>
<thead>
<tr>
<th>Days after start of administration</th>
<th>IgG % T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
</tr>
</tbody>
</table>

- IV dose (10mg/kg)
- SC dose (10mg/kg) (N=16)

Steady state IgG reduction (~50%)

- IV loading
- SC maintenance
- Time (days)

- IV dose (70 kg)
- SC dose (90 kg)

- Viability of SC formulation demonstrated:
 - Comparable half-life to IV
 - Comparable IgG reduction to IV; steady state 50% IgG reduction achieved by weekly dosing (300 mg fixed dose)
 - Favorable bio-availability (~ 50%)
 - Favorable viscosity and stability profile
Efgartigimod: a Pipeline-in-a-Product Opportunity

Landscape of IgG-mediated severe autoimmune diseases (sampling)

- Immune Thrombocytopenia
 - Myasthenia Gravis
 - Multiple Sclerosis
- Scleroderma
- Lupus
- Epidermolysis Bullosa Acquisita
 - Pemphigus
 - Bullous Pemphigoid

Solid Biology Rationale
Disease proven to be predominantly mediated by pathogenic IgGs

Feasible for Biotech
Orphan potential, economically viable, efficient clinical & regulatory pathway

Proof-of Concept:
Myasthenia Gravis

Therapeutic Area Beachheads with Expansion Possibilities into Adjacent Indications

- Neuromuscular Diseases
- Hematology Disorders
- Blistering Diseases

Chronic Inflammatory Demyelinating Polyneuropathy (CIDP)
Chronic Inflammatory Demyelinating Polyneuropathy (CIDP)

What is CIDP?

- Rare, chronic autoimmune disorder of peripheral nerves, nerve roots
 - Caused by destruction of nerve myelin sheath
- Diagnosis based on clinical symptoms and electrodiagnostic findings
- US prevalence: ~16,000 patients; similar number in EU5
- IgG auto-antibodies increasingly identified in patients
- Progressive disease: symptoms include increasing loss of sensation, tingling and pain, loss of reflexes, weakness, difficulty walking, foot drop, and can lead to immobility

Limited treatment options

- IV/SC immunoglobulin *, corticosteroids
 - major IVIg indication **
- Plasma exchange
- Other immunosuppressants

Unmet need in CIDP

- Disease burden significantly underestimated
- Existing treatments are onerous and associated with significant side effects
- New treatments that are more effective and convenient, safer and better tolerated than IVIg or steroids

*Estimated IV/SC Ig US sales in CIDP reached $1B in 2014
** Robert et al, 2015

GBS/CIDP Foundation
argenx proprietary market research
ARGX-110 (Cusatuzumab): Phase 1 / 2 Mono & Combo Therapy
Cusatuzumab Mode-of-Action Targets both Leukemic Stem Cells and Blasts

Cusatuzumab induces LSC differentiation

1. Induce myeloid differentiation
2. Kill LSCs

Cusatuzumab kills blasts

3. Kill Blasts
4. Block proliferation & survival signal

 Activation of the pathway leads to release of sCD27, which is a biomarker

- Cusatuzumab is a potentially first-in-class anti-CD70 ADCC enhanced SIMPLE Antibody™ which selectively targets LSCs and blasts in AML and other heme indications

What is Acute Myeloid Leukemia?

- Rare hematologic cancer characterized by excessive proliferation of myeloid stem cells and their failure to properly differentiate into mature white blood cells
- AML progresses very rapidly and is fatal if left untreated
- ~22,000\(^{(1)}\) new cases per year in the U.S.
- Disease of the elderly — 60% of diagnosed patients are older than 60

Limited current treatment options

- Elderly, frail patients unfit for high dose chemotherapy — palliative treatment with hypomethylating agents
 - Median survival of 7 – 10 months
 - ~6\(^{(2)}\)% five year survival rate for patients over 65
- First-line treatments for patients <45: aggressive chemotherapy followed by stem cell transplant
 - 5-year survival is ~57\(^{(2)}\)% for patients under 45

Phase 1 – Dose Escalation

Safety and tolerability

- Vidaza = 75 mg/m² (standard of care)
- N = up to 24

Dosing Cohorts:
- 1 mg/kg, N = 3+3
- 3 mg/kg, N = 3+3
- 10 mg/kg, N = 3+3
- 20 mg/kg

Phase 2 – Proof of Concept

- Vidaza = 75 mg/m² (standard of care)
- N = 21

Dosing Cohort:
- 10 mg/kg

We are here

- Hypomethylation agents such as Azacitidine increase CD70 expression
- Population: untreated AML & high risk of myelodysplastic syndrome (MDS), eligible for AZA
- Design: open-label, non-controlled, non-randomized

Phase 1 Data from 4 Dosing Cohorts to Be Presented at ASH18

*Some Myelodysplastic Syndrome (MDS) patients are at high risk of developing AML; MDS affects bone marrow cells, reducing their ability to produce red & white blood cells

(1) Zhou et al. 2011, Lupus.
CD70 Provides Unifying Rationale Across Risk & Age Classes in AML
Potential to selectively target leukemic stem cells in AML patients

- Elevated sCD27 serum levels in all newly diagnosed AML patients, regardless of risk or age categories
- sCD27 levels are an independent negative prognostic marker in all newly diagnosed AML patients
- CD70 expressed on ~86-100% of AML blasts, majority of malignant cells are CD70/CD27 double-positive
- CD70/CD27 selectively overexpressed on leukemic stem cells (LSCs), not on hematopoietic stem cells (HSCs)

ARGX-110: Inhibits LSC Proliferation in Lasting Fashion

Long-term effects *ex vivo*

- Reduces LSC colony formation across patient risk categories (favorable/intermediate/adverse risk)
- Reduces LSC numbers as determined in serial re-plating experiments
- Blocking CD70 results in: (1) lasting down-regulation of stem cell genes (2) increasing myeloid differentiation

ARGX-110: Curative Potential of Monotherapy in Mouse Model

Shown to reduce LSCs, increasing survival in AML model

- Increased survival after secondary transplantation of AML BM cells from primary recipients transiently treated with ARGX-110 variant
- Increased survival observed for AML blasts taken from all 3 AML risk categories (fav/int/adv)

Hypomethylating agent+ ARGX-110 Synergistically Eradicate AML LSC

HMA-treated patients, Ex vivo colony formation assay (primary AML LSC)

- **HMA upregulate CD70 protein and mRNA on AML LSC ex vivo (~4-fold) and in vivo (~5-7-fold) – NOT on HSC**
- **Ex vivo**: HMA/αCD70 synergistically reduce colony formation; effect maintained upon serial replating, transient treatment
- **In vivo**: Transient treatment by HMA/αCD70 eradicate human LSCs in therapeutic model; efficacy confirmed in CFU assay

In vivo PDX model (primary AML LSC)

- **HMA**
 - **Δ MFI CD70 (fold change)**
 - **Colonies / 10^3 CD34^+CD38^- cells**
 - **P6 fav. P8 int. P11 adv.**

<table>
<thead>
<tr>
<th></th>
<th>Veh</th>
<th>αCD70</th>
<th>D</th>
<th>αCD70/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ MFI</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P6 fav.</td>
<td></td>
<td>***</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P8 int.</td>
<td>***</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P11 adv.</td>
<td>***</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- **In vivo**
 - **human colonies / 10^5 plated BM cells**

<table>
<thead>
<tr>
<th></th>
<th>Veh</th>
<th>αCD70</th>
<th>D</th>
<th>αCD70/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6 fav.</td>
<td>21</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>P8 int.</td>
<td></td>
<td>***</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>P11 adv.</td>
<td>n.s.</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hinterbrander ASH 2017: Blocking CD70/CD27 signaling in combination with hypomethylating agents eradicates human CD34+ AML stem and progenitor cells; manuscript in preparation
Non-Transplantable Patients with Intermediate & Adverse Risk and High Blast Count in Bone Marrow

9 newly diagnosed AML patients

<table>
<thead>
<tr>
<th>Baseline characteristics (N=9)</th>
<th>ARGX-110 + Azacitidine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mg/kg</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>71</td>
</tr>
<tr>
<td>71-80</td>
<td></td>
</tr>
<tr>
<td>Gender: Male/Female</td>
<td>2/1</td>
</tr>
<tr>
<td>Risk (ELN 2017)</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>Adverse</td>
<td>2</td>
</tr>
<tr>
<td>Blasts in the bone marrow</td>
<td></td>
</tr>
<tr>
<td>Median %</td>
<td>51.3</td>
</tr>
<tr>
<td>24-90</td>
<td></td>
</tr>
<tr>
<td>AML classification (WHO 2016)</td>
<td></td>
</tr>
<tr>
<td>Not other specified</td>
<td></td>
</tr>
<tr>
<td>With Myelodysplasia- related changes</td>
<td>2</td>
</tr>
<tr>
<td>Therapy-related myeloid neoplasm</td>
<td>1</td>
</tr>
<tr>
<td>French-American-British subtypes</td>
<td>M4,M1,M2</td>
</tr>
</tbody>
</table>

ELN: European Leukemia Net, Dohner et al. 2017, Blood

Source: argenx data – patient anecdotes – uncleaned data
Response in 6/6 Evaluable Newly Diagnosed AML Patients
ARGX-110/Aza treatment

- So far, all patients responded (3 CR, 1 CRi, 2 PR)
- 1 patient reached CR and bridged to allogeneic stem cell transplant after 5 cycles
- 6/9 patients were still on treatment

Case Study: Cusatuzumab/Aza Induces Complete Remission and Bridges to Transplant

- 75 year old male; AML with myelodysplasia-related changes, M1; BM 40% blasts CM
- Molecular genetics: U2AF1mut; DNMT3Amut; cytogenetics: normal

Screening

Leukemic blast persistence – (C1D1)

Leukemic clearance – (C4D1)

Bone marrow: % Blasts, flow cytometry

Blood analysis: Absolute counts (G/L)

MRD negative
Case Study: Cusatuzumab/Aza Combo Reduces AML Stemness

- Significantly reduced LSC colony formation
- Increased myeloid differentiation (asymmetric division) of LSCs
- Reduction of LSC gene signature

Ng et al. 2016, Nature
ARGX-110 in Newly Diagnosed AML Patients

Ongoing Phase 1 dose-escalation part of the Phase 1/2 clinical trial (12 patients)

Data cut-off of July 16 - Abstract published for ASH

Encouraging proof of biology data in 12 patients (4 dose cohorts; 3 patients each)
- 11/12 responders
 - Complete response: 8 patients (73%)
 - Complete response without hematologic recovery: 1 patient (9%)
 - Morphologic leukemia-free status: 1 patient (9%)
 - Partial response: 1 (9%)
- Minimal residual disease (MRD) negativity: 5/12 (42%)
- Median response duration: 6.9 months (up to 14.4 months – analysis still ongoing)
- ARGX-110 monotherapy & in combo with AZA reduce leukemic stem cells in BM

Encouraging safety and tolerability profile
- No exacerbation of azacitidine toxicity observed
- No dose limiting toxicity
- Safety profile enabling combination therapy (with ao hypomethylating agents)

Highly differentiated drug profile
- CD70 uniformly & selectively expressed
- Driving LSCs into myeloid differentiation
Business development & financials
AbbVie Partnership for Novel Target GARP

Strategic Antibody Collaboration Details

- **GARP** is a protein specifically present on the surface of activated regulatory T-cells (Tregs)
- **AbbVie** exercised option in August 2018 to:
 - Obtain exclusive, worldwide license to develop and commercialize ARGX-115
 - Fund further GARP-related research by argenx beyond ARGX-115
 - **argenx** can study ARGX-115 in combo with its pipeline programs

Financial Highlights

- $60mm received to date
- $625mm in potential development, regulatory and commercial milestones
- **Tiered royalties** on sales at percentages ranging from mid-single digits to low teens
- **Co-promotional** rights for ARGX-115-based products in the European Economic Area and Switzerland
Additional Strategic Collaborations

<table>
<thead>
<tr>
<th>Partner</th>
<th>Asset</th>
<th>Key commentary</th>
</tr>
</thead>
</table>
| Genor Biopharma | ARGX-109 (Gerilimzumab) | - Anti-IL-6 antibody for rheumatoid arthritis (P1 concluded)
- Development for Chinese market |
| LEO | ARGX-112 | - Focused on **inflammation-based dermatological indications**
- LEO Pharma funds >50% of all development costs up to CTA approval and all development post-approval of first Phase 1 trial in Europe
- argenx is eligible for ~€100mm in aggregate milestone payments + tiered royalties |
| STATEN BIOTECHNOLOGY | ARGX-116 | - Focused on **dyslipidemia**
- Jointly responsible for conducting dyslipidemia research — Staten responsible for additional clinical development
- argenx eligible for royalties in the low twenties |
| Shire | | - Focused on **novel rare disease targets**
- Provides Shire access to SIMPLE Antibody™ platform + Fc engineering technologies
- argenx has received $12.6 mm in aggregate upfront and milestone payments and R&D fees over the course of the collaboration
- Shire purchased €12mm of argenx ordinary shares through participation in July 2014 IPO |
Financial Profile and Investor Composition

Shareholder base > 70% U.S. investors

Additional Key Statistics – Sept 30, 2018

- Cash position: €582.3 mm
- Capital raised since inception: €730 mm (ex. grants)
 - 2017: raised $115 mm (€102 mm) in Nasdaq IPO
 - 2017: raised $266 mm (€226 mm) in public offering
 - 2018: raised $300 mm (€256 mm) in public offering
- Non-dilutive funding since inception: €104 mm (incl. grants)
 - 2018: $10 mm second preclinical milestone AbbVie
- 120 employees & consultants — 89 R&D, 31 SG&A

Blue-Chip Investor Base – Sept 30, 2018

- U.S. shareholding expanded *above* 70%
- Outstanding shares: 35,934,457
Appendix
Augmenting Intrinsic Therapeutic Properties of Antibodies

Leadership in discovery and application of novel biology

- Extends half-life / PD effect
- Enhances tissue penetration
- Clears disease target
- Clears autoantibodies
- Boosts cell killing

V-region

- Unlock novel and complex targets

Fc region

- Modulate immune response

SIMPLE Antibody™ Platform
- Llama immune system delivers V-regions with high human homology
- Highly diverse antibody output covers a multitude of target epitopes

NHance®
- Extends half-life / PD effect
- Enhances tissue penetration

ABDEG™
- Clears disease target
- Clears autoantibodies

POTELLIGENT®
- Boosts cell killing

Unique suite of technologies enables development of differentiated product candidates against novel targets

Klarenbeek et al. 2015, mAbs
Basilico et al. 2014, J Clin Inv
Please Join argenx for a Lunch and Discussion during the ASH Annual Meeting

Proof-of-Concept of Efgartigimod (ARGX-113) in Immune Thrombocytopenia (ITP)
Advancing Cusatuzumab (ARGX-110) in Acute Myeloid Leukemia (AML)

Monday, December 3, 2018
12:00 – 1:30 PM PT
Event will be webcast

Hilton San Diego Bayfront
Aqua 310
1 Park Blvd
San Diego, CA 92101
Two minute walk from Convention Center

Agenda
- Full Data from Phase 2 Clinical Trial of Efgartigimod in ITP
- Phase 1 Dose-Escalation Trial of Cusatuzumab in AML

Guest Speaker
Dr. Adrian C. Newland
Barts and the London School of Medicine and Dentistry
The Royal London Hospital

Dr. Adrian F. Ochsenbein
Department of Medical Oncology
University of Bern
Bern University Hospital