Long-Term Safety, Tolerability, and Efficacy of Efgartigimod in Patients With Generalized Myasthenia Gravis: Interim Results of the ADAPT+ Study

James F. Howard, Jr, Vera Bril, Tuan Vu, Chafic Karam, Stojan Peric, Jan L. De Bleecker, Hiroyuki Murai, Andreas Meisel, Said Beydoun, Mamatha Pasnoor, Antonio Guglietta, Peter Ulrichts, Caroline T’joen, Kimiaki Utsugisawa, Jan Verschuuren, Renato Mantegazza for the ADAPT Investigator Study Group

1Department of Neurology, The University of North Carolina, Chapel Hill, NC, USA; 2Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada; 3Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA; 4Penn Neuroscience Center, University of Pennsylvania, Philadelphia, PA, USA; 5Neurology Clinic, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia; 6Ghent University Hospital, Ghent, Belgium; 7Department of Neurology, School of Medicine, International University of Health and Welfare, Tokyo, Japan; 8Charité – Universitätsmedizin Berlin, Berlin, Germany; 9Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 10University of Kansas Medical Center, Kansas City, Kansas, USA; 11argenx, Ghent, Belgium; 12Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan; 13Department of Neurology, Leiden University Medical Center, Netherlands; 14Department of Neuroimmunology and Neuromuscular Diseases, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
Disclosures

• The phase 3 ADAPT and ADAPT+ studies were funded by argenx
• JFH has received research support, honoraria, and nonfinancial support from argenx

JFH has also received research support from Alexion Pharmaceuticals, Cartesian Therapeutics, the Centers for Disease Control and Prevention (Atlanta, GA, USA), the Myasthenia Gravis Foundation of America, the Muscular Dystrophy Association, the National Institutes of Health (including the National Institute of Neurological Disorders and Stroke and the National Institute of Arthritis and Musculoskeletal and Skin Diseases), PCORI, Ra Pharmaceuticals (now UCB), and Takeda Pharmaceuticals; Honoraria from Alexion Pharmaceuticals, Immunovant Inc, Ra Pharmaceuticals (now UCB), Regeneron Pharmaceuticals, Sanofi US and Viela Bio Inc. (now Horizon Therapeutics) and nonfinancial support from Alexion Pharmaceuticals, Ra Pharmaceuticals (now UCB) and Toleranzia AB
Efgartigimod Mechanism of Action: Blocking FcRn

- FcRn recycles IgG, extending its half-life and serum concentration\(^1\)

- Efgartigimod is a human IgG1 Fc fragment, a natural ligand of FcRn, engineered for increased affinity to FcRn\(^2\)

- Efgartigimod was designed to outcompete endogenous IgG, preventing recycling, and promoting lysosomal degradation of IgG, without impacting its production\(^2-5\)
 - Targeted reduction of all IgG subtypes
 - No impact on IgM or IgA
 - No reduction in albumin levels
 - No increase in cholesterol

Sources:

5. argenx Data on File, 2022.

Abbreviations:

FC, crystallizable fragment; FcRn, neonatal Fc receptor; gMG, generalized myasthenia gravis; IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M.
ADAPT+ Study Design

ADAPT+ Study Design

ADAPT¹ (Placebo controlled)
- 26 weeks (max. 3 cycles)
- N=151
- Efgartigimod
- Placebo

ADAPT+ (Open-label efgartigimod)
- Up to 3 years
- Part A (1 y)
- Part B (2 y)
- Efgartigimod

2 weeks screening
- MGFA Class II, III, IV
- AChR-antibody positive or negative
- MG-ADL score ≥5
- On ≥1 stable gMG treatment
- IgG ≥6 g/L

Subsequent treatment cycle(s) if required

Arrows indicate treatment periods of 4 infusions at weekly intervals

AChR, acetylcholine receptor; gMG, generalized myasthenia gravis; IgG, immunoglobulin G; IV, intravenous; MG-ADL, Myasthenia Gravis Activities of Daily Living; MGFA, Myasthenia Gravis Foundation of America; Wk, week. Note: Patients requiring rescue therapy discontinued from the study treatment.

Efgartigimod Demonstrated Repeatable and Sustained Improvement in Both MG-ADL and QMG Over Multiple Cyclesa in ADAPT+

\textit{ACHR-Ab+ Population}

\textbf{MG-ADL Total Score}
Mean Change From Cycle Baseline by Cycle
(Efgartigimod + current TX)

\begin{table}
\begin{tabular}{cccc}
周期 & 患者 & 周期1 & 周期2 & 周期3 & 周期7 & 周期11 \\
1 & 106 & 105 & 102 & 103 & 103 & 57 \\
2 & 99 & 99 & 95 & 95 & 97 & 49 \\
3 & 86 & 85 & 85 & 85 & 81 & 33 \\
4 & 74 & 72 & 73 & 71 & 66 & 22 \\
5 & 61 & 61 & 61 & 61 & 57 & 15 \\
\end{tabular}
\end{table}

\textbf{QMG Total Score}
Mean Change From Cycle Baseline by Cycle
(Efgartigimod + current TX)

\begin{table}
\begin{tabular}{cccc}
周期 & 患者 & 周期1 & 周期2 & 周期3 & 周期7 & 周期11 \\
1 & 106 & 103 & 101 & 100 & 90 & 49 \\
2 & 99 & 93 & 89 & 89 & 73 & 38 \\
3 & 83 & 76 & 73 & 73 & 59 & 25 \\
4 & 65 & 54 & 57 & 55 & 49 & 15 \\
5 & 49 & 47 & 48 & 44 & 40 & 10 \\
\end{tabular}
\end{table}

Only cycles with data out to week 11 are depicted
Proportion of Patients With Increasing MG-ADL or QMG Improvement Over Multiple Cycles

AChR-Ab+ Population

Change in MG-ADL Total Score
- **Efgartigimod (open-label)**
 - Week 3 of cycles 1-5 in ADAPT+
 - Median % (range)
- **Placebo (phase 3)**
 - Week 3 of Cycle 1 in ADAPT

- **≥9**
 - Efgartigimod: 20.0% (0.0%)
 - Placebo: 0.0% (0.0%)
- **≥8**
 - Efgartigimod: 29.4% (0.0%)
 - Placebo: 0.0% (0.0%)
- **≥7**
 - Efgartigimod: 38.9% (1.6%)
 - Placebo: 3.3% (3.3%)
- **≥6**
 - Efgartigimod: 48.2% (3.3%)
 - Placebo: 9.8% (9.8%)
- **≥5**
 - Efgartigimod: 56.5% (9.8%)
 - Placebo: 21.3% (21.3%)
- **≥4**
 - Efgartigimod: 68.4% (21.3%)
 - Placebo: 31.1% (31.1%)
- **≥3**
 - Efgartigimod: 78.4% (31.1%)
 - Placebo: 45.9% (45.9%)
- **≥2**
 - Efgartigimod: 85.9% (45.9%)
 - Placebo: 63.6% (63.6%)
- **1**
 - Efgartigimod: 6.3% (19.7%)
 - Placebo: 5.3% (13.1%)
- **0 (no change)**
 - Efgartigimod: 5.3% (13.1%)
 - Placebo: 5.3% (13.1%)
- **Worsened**
 - Efgartigimod: 3.9% (21.3%)
 - Placebo: 3.9% (21.3%)

Change in QMG Total Score
- **Efgartigimod (open-label)**
 - Week 3 of cycles 1-5 in ADAPT+
 - Median % (range)
- **Placebo (phase 3)**
 - Week 3 of Cycle 1 in ADAPT

- **≥10**
 - Efgartigimod: 12.3% (0.0%)
 - Placebo: 0.0% (0.0%)
- **≥9**
 - Efgartigimod: 16.0% (0.0%)
 - Placebo: 0.0% (0.0%)
- **≥8**
 - Efgartigimod: 23.3% (0.0%)
 - Placebo: 0.0% (0.0%)
- **≥7**
 - Efgartigimod: 28.0% (1.7%)
 - Placebo: 1.7% (1.7%)
- **≥6**
 - Efgartigimod: 36.0% (1.7%)
 - Placebo: 1.7% (1.7%)
- **≥5**
 - Efgartigimod: 41.8% (5.2%)
 - Placebo: 5.2% (5.2%)
- **≥4**
 - Efgartigimod: 53.0% (15.5%)
 - Placebo: 15.5% (15.5%)
- **≥3**
 - Efgartigimod: 63.6% (27.6%)
 - Placebo: 27.6% (27.6%)
- **2**
 - Efgartigimod: 9.1% (12.1%)
 - Placebo: 12.1% (12.1%)
- **1**
 - Efgartigimod: 12.3% (15.5%)
 - Placebo: 15.5% (15.5%)
- **0 (no change)**
 - Efgartigimod: 6.8% (15.5%)
 - Placebo: 6.8% (15.5%)
- **Worsened**
 - Efgartigimod: 7.0% (29.3%)
 - Placebo: 29.3% (29.3%)

AChR-Ab, acetylcholine receptor autoantibody; CMI, clinically meaningful improvement; MG-ADL, Myasthenia Gravis Activities of Daily Living; QMG, Quantitative Myasthenia Gravis.

a Only cycles with data out to week 11 are included.
Safety: Summary of AEs

Safety Population

<table>
<thead>
<tr>
<th></th>
<th>ADAPT (n=83) [34.51 PY]</th>
<th>ADAPT+ (n=84) [34.86 PY]</th>
<th>Efgartigimod (n=139) [138.14 PY]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR/PY</td>
<td>7.83</td>
<td>7.23</td>
<td>4.06</td>
</tr>
<tr>
<td>% (n)</td>
<td>84 (70)</td>
<td>77 (65)</td>
<td>81 (112)</td>
</tr>
<tr>
<td>SAEs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR/PY</td>
<td>0.29</td>
<td>0.11</td>
<td>0.25</td>
</tr>
<tr>
<td>% (n)</td>
<td>8 (7)</td>
<td>5 (4)</td>
<td>15 (21)</td>
</tr>
<tr>
<td>≥1 Infusion-related reaction event</td>
<td>0.26</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>IR/PY</td>
<td>1.22</td>
<td>1.61</td>
<td>0.84</td>
</tr>
<tr>
<td>% (n)</td>
<td>37 (31)</td>
<td>46 (39)</td>
<td>47 (65)</td>
</tr>
<tr>
<td>Infection AEs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR/PY</td>
<td>0.09</td>
<td>0.20</td>
<td>0.07</td>
</tr>
<tr>
<td>% (n)</td>
<td>4 (3)</td>
<td>4 (3)</td>
<td>6 (8)</td>
</tr>
<tr>
<td>Discontinued study treatment due to AEs</td>
<td>0.35</td>
<td>0.29</td>
<td>0.41</td>
</tr>
<tr>
<td>IR/PY</td>
<td>0.35</td>
<td>0.29</td>
<td>0.41</td>
</tr>
<tr>
<td>% (n)</td>
<td>10 (8)</td>
<td>11 (9)</td>
<td>19 (26)</td>
</tr>
<tr>
<td>Severe AEs (grade ≥3)</td>
<td>0.35</td>
<td>0.29</td>
<td>0.41</td>
</tr>
<tr>
<td>IR/PY</td>
<td>0.35</td>
<td>0.29</td>
<td>0.41</td>
</tr>
<tr>
<td>% (n)</td>
<td>10 (8)</td>
<td>11 (9)</td>
<td>19 (26)</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
</tr>
<tr>
<td>IR/PY</td>
<td>0.09</td>
<td>0.20</td>
<td>0.07</td>
</tr>
<tr>
<td>% (n)</td>
<td>0 (0)</td>
<td>4 (3)</td>
<td>7 (10)</td>
</tr>
<tr>
<td>Most frequent AEs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>0.49</td>
<td>0.34</td>
<td>0.14</td>
</tr>
<tr>
<td>IR/PY</td>
<td></td>
<td>12 (10)</td>
<td>11 (15)</td>
</tr>
<tr>
<td>% (n)</td>
<td>18 (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>0.15</td>
<td>0.32</td>
<td>0.04</td>
</tr>
<tr>
<td>IR/PY</td>
<td></td>
<td>11 (9)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>% (n)</td>
<td>5 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>0.12</td>
<td>0.26</td>
<td>0.09</td>
</tr>
<tr>
<td>IR/PY</td>
<td></td>
<td>10 (8)</td>
<td>7 (10)</td>
</tr>
<tr>
<td>% (n)</td>
<td>5 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>1.13</td>
<td>1.15</td>
<td>0.49</td>
</tr>
<tr>
<td>IR/PY</td>
<td></td>
<td>29 (24)</td>
<td>22 (31)</td>
</tr>
<tr>
<td>% (n)</td>
<td>28 (23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>0.43</td>
<td>0.20</td>
<td>0.07</td>
</tr>
<tr>
<td>IR/PY</td>
<td></td>
<td>8 (7)</td>
<td>5 (7)</td>
</tr>
<tr>
<td>% (n)</td>
<td>11 (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>0.41</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>IR/PY</td>
<td></td>
<td>7 (6)</td>
<td>9 (12)</td>
</tr>
<tr>
<td>% (n)</td>
<td>11 (9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AE, adverse event; IR, incidence rate; MG, myasthenia gravis; PY, patient year; SAE, serious adverse event; URTI, upper respiratory tract infection.
Deaths in ADAPT+: None Related to Efgartigimod per Investigator

<table>
<thead>
<tr>
<th>Age, y/Sex</th>
<th>Cause of Death</th>
<th>Days from last dose</th>
<th>Comorbidities/Medical History</th>
</tr>
</thead>
<tbody>
<tr>
<td>72/F</td>
<td>Unknown; preexisting CV disease, autopsy confirmed coronary artery atherosclerosis and cardiomegaly</td>
<td>4</td>
<td>Pulmonary embolism, chronic obstructive pulmonary disease, hypertension, hypokalemia, and colon bladder fistula</td>
</tr>
<tr>
<td>79/M</td>
<td>MG crisis and progression of underlying disease/	extit{Escherichia coli} pneumonia</td>
<td>79</td>
<td>Chronic rhinitis, anxiety</td>
</tr>
<tr>
<td>66/F</td>
<td>Malignant lung neoplasm (Stage IV)</td>
<td>60</td>
<td>Histoplasmosis, asthma, diabetes mellitus, hypercholesterolemia, macular degeneration, hypertension, squamous cell carcinoma, and bundle branch block</td>
</tr>
<tr>
<td>55/M</td>
<td>Acute MI and generalized unspecified atherosclerosis</td>
<td>24</td>
<td>Anemia, subarachnoid hemorrhage, CTO PCI and angioplasty procedures</td>
</tr>
<tr>
<td>62/M</td>
<td>Septic shock/COVID-19 pneumonia</td>
<td>69</td>
<td>Chronic venous insufficiency, arterial hypertension, deep vein thrombosis, rheumatoid arthritis, and paroxysmal atrial fibrillation</td>
</tr>
</tbody>
</table>

CTO PTI, chronic total occlusion percutaneous coronary intervention; CV, cardiovascular; MI, myocardial infarction; MG, myasthenia gravis; PBO, placebo; PI, principal investigator.
54.6% of patients received ≤5.5 cycles per year
Summary

The safety profile observed during long-term treatment with efgartigimod in ADAPT+ mirrored that seen during ADAPT, even while being conducted during the COVID-19 global pandemic.

This analysis suggests that long-term treatment with efgartigimod is efficacious, providing consistent and repeatable clinically meaningful improvement in function and strength while remaining well tolerated.

ADAPT+ is a planned 3-year study and is currently ongoing.